PHYSICS
AT THE

Monte Carlo School
20 - 23 April 2009 Helmholtz Alliance

HepMCAnalysis Exercises

These exercises will use the HepMCAnalysis package to analyse events generated with either
different MC generators or from different processes.

The aim of the exercise is to separate SM background (here W + jets) from SUSY signal using
standard observables. You should calculate these observables from the event record and fill
histograms using the UserAnalysis class from the HepMCAnalysis package. Events are read in
using the HepMCReader application from the examples section of the HepMCAnalysis package.
The format is the HepMC ASCII format.

For further documentation of the HepMCAnalysis package see http://hepmcanalysistool.desy.de/.
The online documentation of the classes can be found here:
http://hepmcanalysistool.desy.de/Doxygen/html/index.html

In the baseAnalysis class of the HepMCAnalysis package a few helper functions are implemented to
make your life easier. The most important ones are described here. See the documentation for full
details. The UserAnalysis class derives from the baseAnalysis class, so all discussed member
functions and data members from the baseAnalysis class are available in the UserAnalysis class.

® Histograms: You can easily book a 1d ROOT histogram using the
baseAnal ysi s::initH st() member function:

TH1D* initHist(string name, string title, string xlabel, int nrBins=100, double xmin=0., double xmax=100.)

All histograms booked viai ni t Hi st () will be written automatically to a ROOT file at
the end of the job.

® JetFinder: For every analysis class the SISCone jet finder from the FastJet package is run. It
uses 1.0 for the cone and 0.1 as overlap threshold. It only finds jets in the central region of
the event. This means Inl < 2.5.
The jets are stored in the baseAnal ysi s:: m_i ncl usi ve_j et s vector. The size of
the vector gives directly the number of jets. Each jet is of class f ast j et : : PseudoJet .
This class has a similar interface as the HepMC: : Four Vect or class. For example the

member function et a() returns the pseudorapidity () of the jet/particle and the member
function per p() the transverse momentum.

Missing transverse energy: Missing Er is defined as the transverse component of the sum of
all stable, invisible particles:

Er;is :\/(Zinvis px)z +(Zlﬁnvi‘v py)z

L

In the SM these are only the three neutrinos (and their anti particles). In case of SUSY it is
the lightest supersymmetric particle (LSP). This is either the lightest neutralino in
mSUGRA models or the gravitino in GMSB models.

You can calculate missing ET using the baseAnal ysi s: : Fi ndM ssi ngEt () member
function. The result is stored in the baseAnal ysi s: : et M ssTr ut h data member.

Effective mass: The effective mass is defined as the scalar sum of the missing Er and the
transverse momentum of the first leading jets:

) 4)
_ pmis jet
meﬁ'_ET +zjet:1 Py

Usually, the ordering of jets is done in pr. The jet with the highest pr come first.

In order to separate SM background from SUSY signal we will apply cuts on the following
quantities:

® missing Er

® number of jets

® prand n of the first three jets

Installation

1. Installation of the analysis classes from the HepMCAnalysis package:
a) go to the directory, where you want to work, e. g. ~/school
b) untar the HepMCAnalysis source from the MC school AFS space:

>tar -xzvf
| af s/ desy. de/ group/ al I i ance/ ntg/ publ i ¢/ nt_school s/ 2009/ hep
ncanal ysi s/ MCS_HepMCAnal ysis.tar. gz

c) compile the analysis classes
>cd HepMCAnal ysi s
>source setup.sh
>gmake

2. Installation of the HepMCReader application:

a) go to the directory, where you have the HepMCAnalysis installed, e. g.
~/school/HepMCAnalysis

b) setup the HepMCAnalysis environment:
>source setup.sh

¢) go to the hepmcreader sub directory in the example directory
> cd exanpl es/ hepntr eader

d) compile the HepMCReader application, which gives the reader.exe executable
> gnmake

e) all configuration, i. e. definition of input files, are done in the Pr ocess. confi g
steering file. Run the default:
>./reader.exe Process.config

3. For large scale event processing we have prepared event files in HepMC format for the
signal (0.5 million SUSY gluino events) and background (1million W + jets events) for all
used generators. They are located in / af s/ desy. de/ proj ect/ ncschool / dat a01-
dat a07 in different subdirectories for different generators. The integrated cross section for
these files/processes are written into the log files, which are stored in the same directories as
the HepMC files.

The Pr ocess. confi g files are in the example directory of the MC school AFS space:

[af s/ desy. de/ group/ al | i ance/ ncg/ publ i c/ nc_school s/ 2009/ exanpl es

For example the file Process_Herwig++_W.config contains the config for the
HepMCReader application to read 1 million W + jets events from Herwig++.

Exercises

In this exercise you will modify the UserAnalysis class from the HepMCAnalysis package. The
header file UserAnalysis.h is locate in the include directory of the package. The source code of the
class implementation UserAnalysis.cc in the src directory of the package. If you followed the default
instructions they are here:
~/school/HepMCAnalysis/include/UserAnalysis.h
~/school/HepMCAnalysis/src/UserAnalysis.cc
If you need a new data member, e. g. pointer to a histogram, write it into the header file. Histograms
need to be booked in the | ni t () member function. This member function is called once before the
event loop. All other code, e. g. calculating variables and filling histograms should go into the
Pr ocess() member function, which is called in the event loop for every event. If you modify
either the header or the source file, you need to compile the HepMCAnalysis package again. See the
Instruction section on the previous page for details. If you modify the header file you also need to
compile the HepMCReader application again. See the Instruction section on the previous page for
details.

To ease the start, all necessary histograms are already booked in the | ni t () member function of
the UserAnalysis class. If you need a histogram, go through the list and pick up the name of the
pointer to the histogram to access it. Check the histogram for the number of jets for a full example.

Input files:

When you develop your code, you usually run over a small amount of events to check if you code is
doing what you want. The Pr ocess. confi g file from the example/hepmcreader directory
contains a selection of input files from the different generators and processes. Look for the lines
starting with InputFileNames and comment out the unnecessary lines using the hash symbol (#).
You can also use files which you have produced on your own in the exercises. See the previous
section for processing large amount of events.

Now to the exercises:

1. If you have not done yet, process 10 events with the reader.exe application and the default
UserAnalysis class.

2. Modify the Pr ocess() member function of the UserAnalysis class in such a way, that the
full event is dumped to the screen (the Pr ocess() member function is located in
src/UserAnalysis.cc).

Hint: See documentation of HepMC: : GenEvent class

. Extract the jet quantities (number of jets, eta and pr of the first three jets) and fill them into
histograms. The number of jets is already implemented into the UserAnalysis class. For
more details read the JetFinder part in the Introduction section on the first page.

Hints: Be aware of units. The default units for the HepMC format is MeV and mm. But not
all generators keep to this default. GeV and mm are also quite common.

. Calculate missing Er and fill it into a histogram.

Hints: HepMCAnalysis can do most of the job for you: Search through the HepMCAnalysis
documentation for the baseAnal ysi s: : Fi ndM ssi ngEt member function and the
baseAnal ysi s: : et M ssTr ut h data member. You need to call the member function,
which will then calculate missing Er and put it into the et M ssTr ut h variable.

. Calculate the effective mass and fill it into a histogram.
Hint: The definition of the effective mass is given in the Introduction section on page 2.

. It's plotting time! Run your code over a large amount of events and look at the histograms
in ROOT. If you have already histograms for SM background and SUSY signal, try to
overlay the corresponding histograms and either normalise them to unity or the cross
section.

. We would like to separate the SUSY signal from the SM background. Apply the following
cuts and fill all quantities after the cuts again:

e missing Er > 100 GeV

e at least three jets in the central region (Inl < 2.5)

o for the first three jets pr > 50 GeV

Hints: The jet finder used in the HepMCAnalysis package applies already a cut of Inl < 2.5
on each jet. Nothing to do for you here.

. It's plotting time! Run your code again over a large amount of events and look at the
histograms with the observables after cuts. Now it is essential that you have used SM
background and SUSY signal samples. Overlay the corresponding histograms and normalise
them to the cross section.

e Are the cuts sufficient to separate signal from background?

e What is the SM background rejection rate?

e What is the SUSY signal efficiency?

Example Solution

If you are stuck or want to see how a problem can be solved, have a look at the example solution
(UserAnalysis.h and UserAnalysis.cc) in the following directory:

| af s/ desy. de/ group/ al I i ance/ ncg/ publ i ¢/ nt_school s/ 2009/ exanpl es

You can run with this version of the UserAnalysis class, if you copy the header file in the
HepMCAnalaysis/include directory and the source file into the HepMCAnalaysis/src directory.
Don't forget to save your version of the UserAnalysis class before and compile the HepMCAnalysis
package again.

Further Exercises for Experts

If you have time or want to learn more about HepMC or the physics, here are more exercises:

L.

Implement your own calculation of missing Er without and fill it into a histogram. Compare
it on a event by event basis with the missing Er from the baseAnal ysi s class.

Hints: Calculate missing Er on your own: Loop over all particles in the event and search for
stable (status code 1) and invisible particles (neutrinos and the lightest neutralino). An
example of the loop is given in the HepMC in 5 seconds sheet. For accessing the status code
and PDG id of a particle see the HHpMC: : GenPar ti cl e class documentation. For the
PDG id of neutrinos and the neutralino check the Monte Carlo Numbering Scheme in the
HepMC in 5 minutes sheet.

Check, which W decays are simulated in the W+jet samples in the different generators. Loop
again over all particles in the event and search Ws. You can get to the daughters via the
decay vertex of the mother particle (W). Loop over all daughters and search either for
electron, muon or tau. If none is found it must decay hadronically.

Hints: See the HepMC: : GenParti cl e documentation for accessing the PDG id and the
decay vertex of a particle. See the HepMC: : GenVer t ex documentation for accessing all
out going particles (daughters) from a vertex.

Not all generators write the same kind of information into the event record. For example, in
Herwig++ the same W can be written more than once into the event record. The same W
decays into a W into a W and finally into a muon and a neutrino. This can be even longer for
Pythia8. Sherpa doesn't write the W at all into the event record and you have to look for a
vertex where you have a lepton and the corresponding neutrino in the list of output particles.
The best is, that you print and look through one or two events before.

Also for this exercises we have prepared example solutions. Have a look at the header and source

file of the UserAnalysis class in

| af s/ desy. de/ group/ al I i ance/ ntcg/ publ i ¢/ nt_school s/ 2009/ exanpl es/ ex

perts

You can run with this version of the UserAnalysis class, if you copy the header file in the

HepMCAnalaysis/include directory and the source file into the HepMCAnalaysis/src directory.

Don't forget to save your version of the UserAnalysis class before and compile the HepMCAnalysis

package again.

